Квантовая криптография - Красавин

Цвет шрифта Цвет фона

Бурное развитие квантовых технологий и волоконно-оптических линий связи привело к появлению квантово-криптографических систем. Они являются предельным случаем защищенных ВОЛС. Использование квантовой механики для защиты информации позволяет получать результаты, недостижимые как техническими методами защиты ВОЛС, так и традиционными методами математической криптографии. Защита такого класса применяется в ограниченном количестве, в основном для защиты наиболее критичных с точки зрения обеспечения безопасности систем передачи информации в ВОЛС.

Природа секретности квантового канала связи

При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов, приходящихся на один импульс, много меньше единицы (порядка 0,1), вступают в действие законы квантовой физики. Именно на использовании этих законов в сочетании с процедурами классической криптографии основана природа секретности квантового канала связи (ККС). В квантово-криптографическом аппарате применим принцип неопределенности Гейзенберга, согласно которому попытка произвести измерения в квантовой системе вносит в нее нарушения, и полученная в результате такого измерения информация определяется принимаемой стороной как дезинформация. Процесс измерений в квантовой физике характеризуется тем, что он может активно вносить изменения в состояние квантового объекта, и ему присущи определенные стандартные квантовые ограничения. Следует выделить ограничения, связанные с невозможностью одновременного измерения взаимодополняемых параметров этой системы, т. е. мы не можем одновременно измерить энергию и поляризацию фотона. Исследования показали, что попытка перехвата информации из квантового канала связи неизбежно приводит к внесению в него помех, обнаруживаемых законными пользователями этого канала. Квантовая криптография использует этот факт для обеспечения возможности двум сторонам, которые ранее не встречались и не обменивались никакой предварительной секретной информацией, осуществлять между собой связь в обстановке полной секретности без боязни быть подслушанными злоумышленником.

 


Так в квантово-оптическом канале связи распространяются одиночные фотоны. 

Немного истории

В 1984 г. Ч. Беннет (фирма IBM) и Ж. Брассард (Монреальский университет) предположили, что квантовые состояния (фотоны) могут быть использованы в криптографии для получения фундаментально защищенного канала. Они предложили простую схему квантового распределения ключей шифрования, названную ими ВВ84. Эта схема использует квантовый канал, по которому пользователи (пусть это будут Алиса и Боб) обмениваются сообщениями, передавая их в виде поляризованных фотонов.

Подслушивающий злоумышленник может попытаться производить измерение этих фотонов, но, как сказано выше, он не может сделать это, не внося в них искажений. Алиса и Боб используют открытый канал для обсуждения и сравнения сигналов, передаваемых по квантовому каналу, проверяя их на возможность перехвата. Если они при этом ничего не выявят, они могут извлечь из полученных данных информацию, которая надежно распределена, случайна и секретна, несмотря на все технические ухищрения и вычислительные возможности, которыми располагает злоумышленник.

Схема ВВ84

Схема ВВ84 работает следующим образом. Сначала Алиса генерирует и посылает Бобу последовательность фотонов, поляризация которых выбрана случайным образом и может составлять 0, 45, 90 и 135°. Боб принимает эти фотоны и для каждого из них случайным образом решает, замерять его поляризацию как перпендикулярную или диагональную. Затем по окрытому каналу Боб объявляет для каждого фотона, какой тип измерений им был сделан (перпендикулярный или диагональный), но не сообщает результат этих измерений, например 0, 45, 90 или 135°. По этому же окрытому каналу Алиса сообщает ему правильный ли вид измерений был выбран для каждого фотона. Затем Алиса и Боб отбрасывают все случаи, когда Боб сделал неправильные замеры. Если квантовый канал не перехватывался, оставшиеся виды поляризации и будут поделенной между Алисой и Бобом секретной информацией, или ключом. Этот этап работы квантово-криптографической системы называется первичной квантовой передачей.

 

Алиса посылает фотоны, имеющие одну из четырех возможных поляризаций, которую она выбирает случайным образом.


Для каждого фотона Боб выбирает случайным образом тип измерения: он изменяет либо прямолинейную поляризацию (+) , либо диагональную (х).


Боб записывает результаты изменения и сохраняет в тайне.


Боб открыто объявляет, какого типа измерения он проводил,а Алиса сообщает ему, какие измерения были правильными.


Алиса и Боб сохраняют все данные, полученные в тех случаях, когда Боб применял правильное измерение. Эти данные затем переводятся в биты (0 и 1), последовательность которых и является результатом первичной квантовой передачи.


Принципы первичной квантовой передачи. Рассматривается простой пример создания общего секретного ключа в квантово-криптографической системе.

Следующим важным этапом является оценка попыток перехвата информации в квантово-криптографическом канале связи. Это может производиться Алисой и Бобом по открытому каналу путем сравнения и отбрасывания случайно выбранных ими подмножеств полученных данных. Если такое сравнение выявит наличие перехвата, Алиса и Боб отбрасывают все свои данные и начинают повторное выполнение первичной квантовой передачи. В противном случае они оставляют прежнюю поляризацию, принимая фотоны с горизонтальной или 45°-й поляризацией за двоичный "0", а с вертикальной или 135°-й поляризацией - за двоичную "1". Согласно принципу неопределенности, злоумышленник не может замерить как прямоугольную, так и диагональную поляризацию одного и того же фотона. Даже если он для какого-либо фотона произведет измерение и перешлет Бобу этот фотон в соответствии с результатом своих измерений, то в итоге количество ошибок намного увеличится, и это станет заметно Алисе. Это приведет к стопроцентной уверенности Алисы и Боба в состоявшемся перехвате фотонов.

Более эффективной проверкой для Алисы и Боба является проверка на четность, осуществляемая по открытому каналу. Например, Алиса может сообщить: "Я просмотрела 1-й, 4-й, 4-й, 8-й... и 998-й из моих 1000 бит, и они содержат четное число единиц". Тогда Боб подсчитывает число "1" на тех же самых позициях. Можно показать, что, если данные у Боба и Алисы отличаются, проверка на четность случайного подмножества этих данных выявит количество ошибок. Достаточно повторить такой тест 20 раз с 20 различными случайными подмножествами, чтобы вычислить процент ошибок. Если ошибок слишком много, то считается, что производился перехват в квантово-криптографической системе.

По всем вопросам обращайтесь через форму обратной связи | Обращение к пользователям | Статьи партнёров