Карцев. Приключения великих уравнений

Главная » Физика »Разное » Карцев. Приключения великих уравнений
Цвет шрифта Цвет фона

Что ж, электронная теория хорошо послужила.

Впрочем, почему – послужила?

Электронная теория используется до сих пор.

Так же как и уравнения Максвелла. Никакие, даже самые великие открытия не способны поколебать теорий, если они правильно отражают процессы, происходящие в мире.

По крайней мере новая теория включает старые правильные теории как крайние или частные случаи.

Так случилось с электронной теорией и уравнениями Максвелла.

Бурное развитие квантовой физики в начале нашего века натолкнуло на мысль, что максвелловы уравнения не применимы в микромире.

Простая и естественная картина непрерывного изменения электромагнитных полей, описываемая уравнениями Максвелла, здесь не может считаться полной. Ведь энергия в соответствии с гипотезой Планка должна в микромире меняться не непрерывно, а квантами, порциями!

Поэтому в 20...30-х годах нашего века был неизбежен переход максвелловой и лоренцевой теорий в новые, квантовые формы. Дирак в 1927 году, а затем Гейзенберг и Паули в 1929-м опубликовали статьи с описанием квантовой теории электромагнитного поля, где нет места непрерывности, где все величины меняются скачками и которая в случае больших объектов и расстояний переходит в старую теорию Максвелла.

Новая теория смогла объяснить ряд тонких эффектов, происходящих в микромире.

Но она внесла и много новых трудностей. Теперь оказалось, что невозможно точно измерить электромагнитное поле в точно указанной точке пространства!

Осталось в квантовой теории и прежнее противоречие лоренцевой электронной теории: энергия точечного электрона осталась бесконечной! Хитроумные способы избежать этого в рамках квантовой электродинамики привели к другому абсурду – к частице, обладающей бесконечной отрицательной массой!

Это – одна из грозовых туч над квантовой теорией электромагнитного поля. Здесь уже не «два облачка на чистом небе законченной теоретической физики», о которых говорил когда-то Дж.Дж. Томсон. Следует учесть, что Томсон имел в виду здесь нижеследующие «атмосферные явления»: неясность, почему электрон не падает на ядро, и странный, как тогда казалось, результат опыта Майкельсона. Мы уже знаем, какой благодатный ливень открытий и идей принесли эти «два облачка». Чем разразится грозовая туча, нависшая сейчас над квантовой теорией электромагнитного поля, пока сказать трудно. Но факт остается фактом – именно в противоречиях квантовой теории – ключ к новым открытиям в физике.

Квантовая теория электромагнитного поля неминуемо должна уступить место другой, более полной и непротиворечивой теории.

Из сказанного может показаться, что квантовая электродинамика заменила электронную теорию так же, как электронная теория заменила теорию Максвелла.

По всем вопросам обращайтесь через форму обратной связи | Обращение к пользователям | Статьи партнёров